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Abstract 

Recent work on the statistical mechanics of model membranes and vesicles in two 
dimensions by Leibler, Singh and the author [1,2] is briefly summarized. 

Bilipid membranes constitute an important class of physicochemical systems 
demanding a systematic theoretical treatment. When the membranes close on them- 
selves one obtains a vesicle, which represents a primiüve prototype of a biological cell. 
Indeed, red blood cells are closely related to artificial bilipid vesicles (of liposomes). As 
conditions of temperature, pH, etc. are changed, red blood cells display a surprising 
fange of more-or-less well-defined shapes: discocytes, stomatocytes, echinocytes . . . . .  
At the same time, typical vesicles in aqueous soluüon are sufficiently small that they 
are subject to significant thermal fluctuations or "flickering": thus, a statisücal 
mechanical theory is more appropriate than a purely mechanical or thermodynamical 
analysis. 

From the more general perspective of the development of statisücal mechanics, 
the importance of the spatial dimensionality d in strongly interacting systems has 
become increasingly evident, especially in the study of phases and phase tr-ansitions. 
However, the intrinsic dimensionality D of the primary fluctuating objects is also a 
crucial feature. Statistical mechanics for D = 0, that is, for points representing atoms or 
simple molecules, is by now very well developed in nearly all its aspects. The last two 
decades have also seen great progress in out understanding of the case D = 1, describing 
lines or curves and applicable to polymeric molecules, in dilute solution, near walls, in 
melts, etc. This case also represents vortices in superfluid liquid helium or flux lines in 
superconductors, etc. Only more recently, however, has statistical mechanics started to 
develop for D = 2, representing surfaces. In the everyday (d = 3)-dimensional wofld, 
important applications are to interfaces and membranes. In field theory, D = 2 corre- 
sponds to the theory of "strings" in d = 3 + 1 = 4 space-time dimensions. Note that one 
can also approach the classification in terms of the codimension of  the basic fluctuating 
manifolds, namely, D = d - D. Then surfaces in d = 3 spatial dimensions and curves in 
d = 2 dimensions, on which we will focus hefe, both correspond to D = 1. 
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In modeling a membrane which, unlike a simple interface, has a distinct, well- 
developed chemicophysical structure, it is important to recognize specific properties 
beyond the overall shape. In particular, it is crucial to anow for rather strong 
connectivity and, also, for an intrinsic rigidity or resistance to bending. Furthermore, in 
contemplating closed membranes or vesicles ( D = 1), which separate an interior region 
from an exterior region, it is clear that the pressure difference, 

A p  = Pint - Pext' (1) 

must play an important role. Indeed, purely in mechanical terms one can see that the 
interplay of rigidity with pressure, which controls its conjugate variable, namely the 
enclosed volume (for d = 3) or the area (for d = 2), can lead to abrupt changes in the 
equilibrium shape of a vesicle. 

In a first approach to these problems, in collaboration with Leibler and 
Singh [1-3], Monte Carlo simulations (using the Comell Supercomputer) and scaling 
concepts have been applied. The treatment so far has been confined to d = 2 dimensions. 
Apart from the value of clarifying the simpler conceptual situation first, current com- 
puter limitations make the simulation (or other numerical approaches) very difficult for 
closed surfaces in d = 3 dimensions. (See, however, the Jerusalem Winter School 
Proceedings [4] for recent developments of the general theory and simulations for open 
membranes.) 

The membrane is represented by the traditional "pearl necklace model" of  
polymer theory, i.e. by a closed stfing of N hard, nonoverlapping beads of diameter a 
cormected by loose "tethers" of fixed maximum length l 0 (sufficiently short that a bead 
cannot squeeze between two adjacenfiy connected beads). Bending rigidity, with modulus 
te, is introduced via energy terms 

E i = ( ~¢/a)(1 - cos 0/), (2) 

which tend to reduce the angles 0 i between neighboring bead-to-bead vectors. 
When one sets the bending modulus tc and the pressure differential Ap to zero, 

one obtains flaccid vesicles which correspond simply to closed seff-avoiding random 
walks or polymer chains. As one increases N, the number of beads, characteristic 
nontrivial size-dependences and associated fractal shapes emerge. All properties scale 
with definite powers of N. In particular, the radius of gyration R C and the mean area vary 
as 

(e~)  - N 2v, (3) 

(A) - N  2va. (4) 

The Monte Carlo data (for N up to about 100) yield [1] v = 0.755 + 0.018. (Owing to 
the difficulties of reaching equilibrium, larger values of N cannot be handled reliably.) 
The estimate for the exponent v agrees weil with the exact result for self-avoiding walks 
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_ 3 The simulations also give VA/V = 1.007 + 0.013: in the plane now known to be v - ~. 
this confirms the natural theoretical expectation v A = v, which means that, despite the 
overaU fractal nature of  the fluctuating closed chain, its mean area is proportional to the 
square of  its mean linear dimension. This result also confirms an old estimate by Sykes 
and Hüey [5], who studied areas of  N-step polygons on square and triangular lattices 
and concluded that 2 v  A = 1.50 + 0.04. 

When nonzero pressure differences are introduced, dramatic changes in shape 
and size eventually develop. It is found that the scaling variable 

A p a  2 
x - - -  N q~v (5) 

kBT 

controls the behavior for large N. For x of order unity, and positive or negative, eqs. (3) 
and (4) go over to the scaling forms [1] 

(R~) = N2VX (x), (6) 

(A)  = N 2 V y ( x ) ,  (7) 

where we have accepted v = v A. Theoretical analysis indicates that the crossover 
exponent tp should take the value 2, since the pressure couples to the area. Fits to the 
simulations give tp = 2.13 + 0.17. 

When x becomes large and posiüve, the vesicles become inflated into 
increasingly circular shapes, as is to be anticipated: ultimately, (R~) and (.4) must 
increase as N 2. On the other hand, if Ap is made negative, the behavior of X(x)  and Y(x) 
for large x describes how the vesicles "wrinkle up" and shrink. Eventually, for x > 10, 
a new scaling regime is reached, in which one finds 

X ( x ) -  1/Ixl cr and Y ( x ) -  1/Ixl z, (8) 

with exponents cr = 0.13 + 0.05 and "r = 0.25 + 0.04. In this collapsed regime, the 
vesicles typicaUy look skinny and branched like seaweed! Indeed, the exponents o'and 
"rare consistent with the expectation (A) ~ N, which must hold under minimal area 
conditions, and with an overall size dependence on N corresponding to that expected for 
branched polymers or "lattice animals" (which are believed to belong to the same 
universality class [6]). Specifically, we find the size exponent v_ = v(1 - cr~p) = 0.65 
+ 0.04 compared with v = 0.6408 expected for branched polymers [7]. 

Introduction of  nonzero rigidity tc leads to new phenomena. SmaU values of tc 
in the flaccid regime, where Ap vanishes or x is smaU, have only the effect of re- 
normalizing the interbead distance or effective diameter;, i.e. the Kuhn length is 
smoothly increased but exponents and shapes do not alter. However, in the deflated 
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regime with Ap negative and Ixl » 1, the rigidity pmduces more startling effects. 
Indeed, one discovers that the model vesicles assume a series of  well-defined character- 
istic shapes which have been termed cytotypes. A variety of shapes, illustrated 
graphically in refs. [1,2], are seen. Some are ellipsocytes, i.e. elliptical of  variable 
eccentricity, tuned by the interplay of Ap, sc, and N. Others are bi-lobocytes, reminiscent 
of  the cross-sections of real discocytes, i.e. resembling dumbbells with two rounded 
lobes separated by a narrower straight section. In some cases, planar stomatocytes or 
cup-shaped forms are obtained. Near borderline values of the parameters, the observed 
shapes in the Monte Carlo simulation appear to fluctuate between two or three quite 
distinct forms, as seen in a finite-size simulation of  a particle or magnetic system near 
a bulk first-order phase transition [1]. 

To analyze the appearance of cytotypes, it is helpful to express the parameters in 
terms of  characteristic lengths. Thus, one has the contour or chemical length 

L = Na, (9) 

the pressure or baric length 

1 = IkaT/Apll/2, (10) 

and the rigidity length 

l, - t¢/kaT. (11) 

One can then argue [1] that the cytotype regime sets in w h e n / r >  L >  1 and p*/L< 1, 
where p* is a characteristic smanest radius of curvature of a lobe or other feature in a 
cytotype. By minimization of the pressure and bending energy, this can be estimated as 

p* = ( le / )  m - (t¢/Ap) m. (12) 

Using the criterion p* = O(L), one can expect to rea_lize the same cytotype for different 
values of  N. In current work [8], this surmise is being tested and the vafious cytotype 
domains are being mapped out. The smaU equilibrium flickering of the cytotypes will 
be studied, as weu as the nonlinear flickering observed [1] near the transitions fmm one 
cytotype m another. The sense in which the transitions might become true phase 
transiüons in an appropriate large-N limit remains to be clarified. Note, however, that 
increasing N at f ixed Ap and fixed t¢ leads only to inflated balloon-like vesicles (for 
Ap > 0), to flaccid self-avoiding rings (for Ap = 0), or to collapsed branched-polymer 
forms (for Ap < 0). Evidently, appmpriate new scaling regimes must be elucidated. 
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